| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 12(6); 2011 > Article
International Journal of Automotive Technology 2011;12(6): 839-847.
doi: https://doi.org/10.1007/s12239-011-0096-7
MODEL DEVELOPMENT AND EXPERIMENTAL RESEARCH ON AN AIR SPRING WITH AUXILIARY RESERVOIR
H. LIU, J. C. LEE
Keimyung University
ABSTRACT
This paper focuses on the dynamic stiffness and overall equivalent damping of an air spring connected to an orifice and an auxiliary reservoir, with respect to the displacement excitation frequency, orifice area, and auxiliary reservoir volume. A theoretical model of this air spring with its auxiliary reservoir is derived by utilizing the energy conservation equation, gas state equation, and orifice flow rate equation. Simulation results from the presented model reveal that, when the air spring is subject to harmonic displacement excitation, its dynamic stiffness increases with an increase in excitation frequency and decrease in orifice area. Smaller orifice areas and lower excitation frequencies result in higher overall equivalent damping. A validation experiment is also implemented. When compared with experimental results, simulations show consistent varying trends of the dynamic stiffness and overall equivalent damping. The model developed here can correctly describe the behavior of the air spring with auxiliary reservoir, indicating that it is reasonable and feasible.
Key Words: Air spring, Auxiliary reservoir, Dynamic stiffness, Equivalent damping, Orifice
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next