| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 22(5); 2021 > Article
International Journal of Automotive Technology 2021;22(5): 1227-1243.
WAKE FLOWS OF HIGHLY DETAILED HEAVY VEHICLES
Damien McArthur, David Burton, Timothy Crouch, Mark Thompson, John Sheridan
Monash University
PDF Links Corresponding Author.  David Burton , Email. david.burton@monash.edu
ABSTRACT
This work presents a detailed wind tunnel investigation into the nature of the unsteady flow mechanisms that dictate the aerodynamic forces acting on prime-mover trailer heavy vehicles fitted with various passive flow control devices. This work builds on the current understating of the wake flow physics of heavy vehicles that until now has primarily been developed from studies utilising highly simplified geometries or time-averaged findings with realistic geometries. Unsteady base-surface and wake pressure measurements reveal how the time-averaged and unsteady flow field responds to the addition of passive aerodynamic devices that have been shown to be effective on operational heavy vehicles for improving fuel economy and reducing emissions. In comparing turbulent wake statistics and unsteady modes the time-averaged and unsteady flow response is linked directly to the measured changes in the aerodynamic drag coefficient thorough surface pressure and force measurement. The large variation in the wake structure and dynamics observed between test configurations highlights the importance of considering the detailed geometry of heavy vehicles when looking to develop advanced aerodynamic control devices that would provide benefits above and beyond those focused on in this study.
Key Words: Heavy vehicles, Aerodynamic drag, Bluff bodies, Wake flows
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next