Int J Automot Technol Search

CLOSE


International Journal of Automotive Technology > Volume 22(6); 2021 > Article
International Journal of Automotive Technology 2021;22(6): 1517-1528.
doi: https://doi.org/10.1007/s12239-021-0131-2
AN AUTONOMOUS DRIVING APPROACH BASED ON TRAJECTORY LEARNING USING DEEP NEURAL NETWORKS
Dan Wang1, Canye Wang1, Yulong Wang1,2, Hang Wang1, Feng Pei1
1GAC R&D Center
2Hunan University
PDF Links Corresponding Author.  Yulong Wang , Email. wangyulong@gacrnd.com
ABSTRACT
Autonomous driving approaches today are mainly based on perception-planning-action modular pipelines and the End2End paradigm respectively. The End2End paradigm is a strategy that directly maps raw sensor data to vehicle control actions. This strategy is very promising and appealing because complex module design and cumbersome data labeling are avoided. Since this approach lacks a degree of interpretability, safety and practicability. we propose an autonomous driving approach based on trajectory learning using deep neural networks in this paper. In comparison to End2End algorithm, it is found that the trajectory learning algorithm performs better in autonomous driving. As for trajectory learning algorithm, the CNN_Raw-RNN network structure is established, which is verified to be more effective than the original CNN_LSTM network structure. Besides, we propose an autonomous driving architecture of a pilot and copilot combination. The pilot is responsible for trajectory prediction via imitation learning with labeled driving trajectories, while the copilot is a safety module that is employed to verify the effectiveness of the vehicle trajectory by the results of the semantic segmentation auxiliary task. The proposed autonomous driving architecture is verified with a real car on urban roads without manual intervention within 40 km.
Key Words: Autonomous driving, Trajectory learning, CNN_Raw-RNN, Pilot and copilot

Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next