| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 9(3); 2008 > Article
International Journal of Automotive Technology 2008;9(3): 267-275.
NUMERICAL MODELING OF HOLLOW-CONE FUEL ATOMIZATION, VAPORIZATION AND WALL IMPINGEMENT PROCESSES UNDER HIGH AMBIENT TEMPERATURES
Y. S. SHIM, G. M. CHOI, D. J. KIM
Pusan National University
ABSTRACT
In the following paper, a numerical study of the atomization, vaporization and wall impingement processes of hollow-cone fuel spray from high-pressure swirl injectors under various ambient temperature conditions was carried out. Also, the availability of applied models and the effect of ambient temperature on spray characteristics is discussed. The Linearized Instability Sheet Atomization (LISA) model combined with the Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model, the improved Abramzon model and the Gosman model are used to calculate the atomization, vaporization and wall impingement processes of hollow-cone fuel spray, respectively. Spray models are implemented with the modified KIVA code. The calculation results of the spray characteristics under two ambient temperatures, including spray tip penetration, spray structure and radial distance after spray-wall impingement are compared to the experimental results obtained by the Laser Induced Exciplex Fluorescence (LIEF) technique. The droplet size distribution, ambient gas velocity field, vapor phase distribution and fuel film mass generated by spray-wall impingement, measurements which are generally difficult to obtain by experimental methods, are also calculated and discussed. Quantitative discussions on the effect of the ambient temperature on the spray development process are conducted. It is shown that the applied models are applicable even in the high ambient temperature condition.
Key Words: Atomization, GDI (Gasoline Direct Injection), Hybrid breakup model, Vaporization, Spray-wall impingement
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next