| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 7(1); 2006 > Article
International Journal of Automotive Technology 2006;7(1): 69-74.
ESTIMATION OF RESIDUAL STRESS IN CYLINDER HEAD
B. KIM1, A. EGNER-WALTER2, H. CHANG3
1Inje University
2Magma
3Hyundai Motor
ABSTRACT
Residual stresses are introduced in aluminum cylinder head during quenching at the end of the T6 heat treatment process. Tensile residual stress resulted from quenching is detrimental to fatigue behavior of a cylinder head when it is overlapped with stresses of engine operation load. Quenching simulation has been performed to assess the{{br}}distribution of residual stress in the cylinder head. Analysis revealed that in-homogeneous temperature distribution led to high tensile residual stress at the foot of the long intake port, where high stresses of engine operation load are expected. Measurements of residual stress have been followed and compared with the calculated results. Results successfully proved that high tensile residual stress, which was large enough to accelerate fatigue failure of the cylinder head, are formed during quenching process at the end of heat treatment at the same critical position. Effect of quenching parameters on the distribution of residual stress in cylinder head has been investigated by choosing different combination of heat treatment parameters. It was demonstrated that changes of quenching parameters led to more homogeneous temperature distribution during cooling and could reduce tensile residual stress at the critical region of the cylinder head used in this study.
Key Words: Residual stress, Cylinder head, Quenching, Heat treatment, Quenching parameter
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next