| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 19(4); 2018 > Article
International Journal of Automotive Technology 2018;19(4): 585-595.
doi: https://doi.org/10.1007/s12239-018-0055-7
ADAPTATION STRATEGY FOR EXHAUST GAS RECIRCULATION AND COMMON RAIL PRESSURE TO IMPROVE TRANSIENT TORQUE RESPONSE IN DIESEL ENGINES
Seungwoo Hong1, Donghyuk Jung2, Myoungho Sunwoo2
1Hyundai Motor Group
2Hanyang University
ABSTRACT
Fuel injection limitation algorithms are widely used to reduce particulate matter (PM) emissions under transient states in diesel engines. However, the limited injection quantity leads to a decrease in the engine torque response under transient states. To overcome this issue, this study proposes an adaptation strategy for exhaust gas recirculation (EGR) and common rail pressure combined with a fuel injection limitation algorithm. The proposed control algorithm consists of three parts: fuel injection limitation, EGR adaptation, and rail pressure adaptation. The fuel injection quantity is limited by adjusting the exhaust burned gas rate, which is predicted based on various intake air states like air mass flow and EGR mass flow. The control algorithm for EGR and rail pressure was designed to manipulate the set-points of the EGR and rail pressure when the fuel injection limitation is activated. The EGR controller decreases the EGR gas flow rate to rapidly supply fresh air under transient states. The rail pressure controller increases the rail pressure set-point to generate a well-mixed air-fuel mixture, resulting in an enhancement in engine torque under transient states. The proposed adaptation strategy was validated through engine experiments. These experiments showed that PM emissions were reduced by up to 11.2 %, and the engine torque was enhanced by 5.4 % under transient states compared to the injection limitation strategy without adaptation.
Key Words: Diesel engine, Transient emissions, Fuel injection limitation, Common rail pressure control, Exhaust gas recirculation
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next