| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 18(2); 2017 > Article
International Journal of Automotive Technology 2017;18(2): 209-217.
doi: https://doi.org/10.1007/s12239-017-0020-x
EFFECTS OF ALTITUDE ON COMBUSTION CHARACTERISTIC DURING COLD START OF HEAVY-DUTY DIESEL ENGINE
Z. C. KAN1, D. M. LOU1, Z. Z. CAO3, Z. Y. HU1, S. LIU3, Z. H. YANG3
1Tongji University
3China North Engine Research Institute
ABSTRACT
Altitude has a significant effect on combustion of heavy-duty diesel engines, especially during cold start. An experimental study on a heavy-duty diesel engine operating at different altitudes was conducted. Tests were based on a direct injection (DI) turbocharged diesel engine with intake and exhaust pressure controlled by the plateau simulation test system to stimulate altitude conditions including 0 m, 1000 m, 2000 m, 3000 m and 4000 m. Results indicated that the compression and expansion resistance moment reduced and the speed increased during the cranking period. The peak pressure of several cycles was increased during the start-up period; however, the expansion pressure dropped more and the indicated mean effective pressure (IMEP) reduced as the altitude rose. While at an altitude of over 2000 m, the peak pressure fluctuated obviously during the start-up period. The higher the altitude was, the more the fluctuation amplitude and cycle number increased and combustion instability enhanced, which resulted the start-up period time increasing at high altitude. When the altitude rose, the cycle-to-cycle variation of the peak pressure and speed fluctuation increased during the idle, the ignition and CA50 were delayed and the combustion duration was shortened. The effect of altitude on combustion characteristics of the diesel engine was more significant during the start-up period than during its idle period.
Key Words: Diesel engine, Heavy-duty, Cold start, Different altitudes, Combustion characteristic
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next