| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 14(2); 2013 > Article
International Journal of Automotive Technology 2013;14(2): 195-206.
doi: https://doi.org/10.1007/s12239-013-0022-2
EXHAUST EMISSIONS AND ITS CONTROL METHODS IN COMPRESSION IGNITION ENGINES: A REVIEW
P. BRIJESH, S. SREEDHARA
Indian Institute of Technology Bombay
ABSTRACT
Extensive usage of automobiles has certain disadvantages and one of them is its negative effect on environment. Carbon dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx), sulphur dioxide (SO2) and particulate matter (PM) come out as harmful products during incomplete combustion from internal combustion (IC) engines. As these substances affect human health, regulatory bodies impose increasingly stringent restrictions on the level of emissions coming out from IC engines. This trend suggests the urgent need for the investigation of all aspects relevant to emissions. It is required to modify existing engine technologies and to develop a better after-treatment system to achieve the upcoming emission norms. Diesel engines are generally preferred over gasoline engines due to their undisputed benefit of fuel economy and higher torque output. However, diesel engines produce higher emissions, particularly NOx and PM. Aftertreatment systems are costly and occupy more space, hence, in-cylinder solutions are preferred in reducing emissions. Exhaust gas recirculation (EGR) technology has been utilized previously to reduce NOx. Though it is quite successful for small engines, problem persists with large bore engines and with high rate of EGR. EGR helps in reducing NOx, but increases particulate emissions and fuel consumption. Many in-cylinder solutions such as lower compression ratios, modified injection characteristics, improved air intake system etc. are required along with EGR to accomplish the future emission norms. Modern combustion techniques such as low temperature combustion (LTC), homogeneous charge compression ignition (HCCI), premixed charge compression ignition (PCCI) etc. would be helpful for reducing the exhaust emissions and improving the engine performance. However, controlling of autoignition timing and achieving wider operating range are the major challenges with these techniques. A comprehensive review of diesel engine performance and emission characteristics is given in this paper.
Key Words: Diesel engine, Emissions, Oxides of nitrogen, Particulate matter, Exhaust gas recirculation, Low temperature combustion
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next