| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 20(1); 2019 > Article
International Journal of Automotive Technology 2019;20(1): 207-213.
doi: https://doi.org/10.1007/s12239-019-0020-0
SIMULATION OF LIQUID AND GAS PHASE CHARACTERISTICS OF AERATED-LIQUID JETS IN QUIESCENT AND CROSS FLOW CONDITIONS
Kyoung-Su Im1, Zeng-Chan Zhang1, Grant Cook Jr.1, Ming-Chia Lai2, Mun Soo Chon3
1Livermore Software Technology Corporation
2Wayne State University
3Korea National University of Transportation
PDF Links Corresponding Author.  Mun Soo Chon , Email. mschon@ut.ac.kr
ABSTRACT
The simulation of the liquid- and gas-phase properties of aerated-liquid jets in various quiescent and cross flow conditions are presented in the study. For simplicity, water is used as the liquid for all test conditions. The effect of various air-to-liquid ratios under super-sonic cross flow conditions are simulated and compared to experimental conditions, which is taken in the supersonic wind tunnel with a dimension of 762 × 152 × 127 mm. An injector with an orifice diameter of 0.5 mm is used both in a non-aerated and aerated injection into a supersonic cross flow prescribed by the momentum flux ratio of the liquid jet to free stream air, q0. The initial conditions of the spray calculation were estimated from internal flow simulation using VOF and X-ray data. The conservation-element and solution-element (CE/SE) method, a novel numerical framework for general conservation law, is applied to simulate the compressible flow. The effect of degree of aeration, breakup, and mixing of the liquid spray are demonstrated. The spray penetration height and average droplet size along with a spray penetration axis are quantitatively compared with data. The shock train flow structures induced by the presence of a liquid jet are further discussed.
Key Words: Liquid jet, Cross flow, Aerated injection, Spray penetration, Breakup, CE/SE method
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next